
By

Dr. Piya Techateerawat

Data Integrity
� Parity Checking

� Parity Checking Analysis

� Double-Bit Error Detection

� Burst Error Detection

� Cyclic Redundancy Checking
� Polynomial Division

� Algorithm of CRC

� Analysis of CRC

� Hamming Codes
� Single-Bit Error Correction

� Multiple-Bit Error Correction

Data Integrity
� Parity Checking

� Parity Checking Analysis

� Double-Bit Error Detection

� Burst Error Detection

� Cyclic Redundancy Checking
� Polynomial Division

� Algorithm of CRC

� Analysis of CRC

� Hamming Codes
� Single-Bit Error Correction

� Multiple-Bit Error Correction

Parity Checking
� Parity Checking:-

� One of the error detection technique

� General technique count a number of even bit or odd
bits

� To send an extra bit to inform the receiver about this
counting even or odd bits called “parity bit”

Data Integrity
� Parity Checking

� Parity Checking Analysis

� Double-Bit Error Detection

� Burst Error Detection

� Cyclic Redundancy Checking
� Polynomial Division

� Algorithm of CRC

� Analysis of CRC

� Hamming Codes
� Single-Bit Error Correction

� Multiple-Bit Error Correction

Parity Checking Analysis
� Parity checking initially develop to detect single bit

error.

11010100 0 what if error show as 11011000 0

Parity bit is 0 to inform that number of 1 is even.

Data Integrity
� Parity Checking

� Parity Checking Analysis

� Double-Bit Error Detection

� Burst Error Detection

� Cyclic Redundancy Checking
� Polynomial Division

� Algorithm of CRC

� Analysis of CRC

� Hamming Codes
� Single-Bit Error Correction

� Multiple-Bit Error Correction

Double-Bit Error Detection
� An improve version of error detection.

� Adding parity checking to detect multiple errors.

11010100 11 Again, if it has error 11011000 11

This will be detected.

This is detected all case ?
Parity bit for

positions 1,3,5,7

Parity bit for
positions 2,4,6,8

Data Integrity
� Parity Checking

� Parity Checking Analysis

� Double-Bit Error Detection

� Burst Error Detection

� Cyclic Redundancy Checking
� Polynomial Division

� Algorithm of CRC

� Analysis of CRC

� Hamming Codes
� Single-Bit Error Correction

� Multiple-Bit Error Correction

Burst Error Detection
� This attempt to detect error which is sent as many set

of data in short time.

� To sending a large set number of parity may be
reduced to make it more efficient.

� One block of data called “frame”

� This can be managed by sending column instead of
rows.

Burst Error Detection

Row
(frame)

Data Parity bit
for row

1 01101 1

2 10001 0

3 01110 1

4 11001 1

5 01010 0

6 10111 0

Row
(frame)

Data Parity bit
for row

1 01101 1

2 00001 0*

3 01110 1

4 01001 1*

5 01010 0

6 00111 0*

Sender Receiver

To send data in column can detect by row parity bit.

For large number of burst e.g. 20 rows successes rate is about 99.9999%

Data Integrity
� Parity Checking

� Parity Checking Analysis

� Double-Bit Error Detection

� Burst Error Detection

� Cyclic Redundancy Checking
� Polynomial Division

� Algorithm of CRC

� Analysis of CRC

� Hamming Codes
� Single-Bit Error Correction

� Multiple-Bit Error Correction

Cyclic Redundancy Checking
� bn-1x

n-1 + bn-2x
n-2+ bn-3x

n-3 + …+b1x + b0

� For example, bit string 10010101110 can be interpreted
as

x10 + x7 + x5 + x3 + x2 + x1

Data Integrity
� Parity Checking

� Parity Checking Analysis

� Double-Bit Error Detection

� Burst Error Detection

� Cyclic Redundancy Checking
� Polynomial Division

� Algorithm of CRC

� Analysis of CRC

� Hamming Codes
� Single-Bit Error Correction

� Multiple-Bit Error Correction

Polynomial Division
� Mod 2 Arithmetic

0 + 0 = 0

0 + 1 = 1

1 + 0 = 1

1 + 1 = 0

0 - 0 = 0

0 - 1 = 1

1 - 0 = 1

1 - 1 = 0

Data Integrity
� Parity Checking

� Parity Checking Analysis

� Double-Bit Error Detection

� Burst Error Detection

� Cyclic Redundancy Checking
� Polynomial Division

� Algorithm of CRC

� Analysis of CRC

� Hamming Codes
� Single-Bit Error Correction

� Multiple-Bit Error Correction

Algorithm of CRC
� Sender:

� Original Data: 11100110

� Transmitted Data:
111001100110

� Receiver:

� Find mod 2 division of
111001100110 and 11001

� Remainder must be “0”

Data Integrity
� Parity Checking

� Parity Checking Analysis

� Double-Bit Error Detection

� Burst Error Detection

� Cyclic Redundancy Checking
� Polynomial Division

� Algorithm of CRC

� Analysis of CRC

� Hamming Codes
� Single-Bit Error Correction

� Multiple-Bit Error Correction

Analysis of CRC
� Is that possible that damage frame cannot be

detected?

� If x is not a factor of G(x), then all burst errors having
length smaller than or equal to the degree of G(x) are
detected.

� If x +1 is a factor of G(x), then all burst errors damaging
an odd number of bits are detected.

� All burst errors for length > Degree of G(x) + 1 the
probability is better than 7th 9 or 99.9999998%

Data Integrity
� Parity Checking

� Parity Checking Analysis

� Double-Bit Error Detection

� Burst Error Detection

� Cyclic Redundancy Checking
� Polynomial Division

� Algorithm of CRC

� Analysis of CRC

� Hamming Codes
� Single-Bit Error Correction

� Multiple-Bit Error Correction

Data Integrity
� Parity Checking

� Parity Checking Analysis

� Double-Bit Error Detection

� Burst Error Detection

� Cyclic Redundancy Checking
� Polynomial Division

� Algorithm of CRC

� Analysis of CRC

� Hamming Codes
� Single-Bit Error Correction

� Multiple-Bit Error Correction

Single-Bit Error Correction
� Data

� 0 1 1 0 0 1 1 1

� Hamming Code

� 0 1 0 1 1 1 0 1 0 1 1 1

Single-Bit Error Correction
� Position 1 (n=1): skip 0 bits (0=n−1), check 1 bit (n), skip 1 bit (n), check 1 bit (n), skip 1 bit (n), etc.

(1,3,5,7,9,11,13,15,...)
� Position 2 (n=2): skip 1 bit (1=n−1), check 2 bits (n), skip 2 bits (n), check 2 bits (n), skip 2 bits (n), etc.

(2,3,6,7,10,11,14,15,...)
� Position 4 (n=4): skip 3 bits (3=n−1), check 4 bits (n), skip 4 bits (n), check 4 bits (n), skip 4 bits (n), etc.

(4,5,6,7,12,13,14,15,20,21,22,23,...)
� Position 8 (n=8): skip 7 bits (7=n−1), check 8 bits (n), skip 8 bits (n), check 8 bits (n), skip 8 bits (n), etc. (8-

15,24-31,40-47,...)
� Position 16 (n=16): skip 15 bits (15=n−1), check 16 bits (n), skip 16 bits (n), check 16 bits (n), skip 16 bits (n), etc.

(16-31,48-63,80-95,...)
� Position 32 (n=32): skip 31 bits (31=n−1), check 32 bits (n), skip 32 bits (n), check 32 bits (n), skip 32 bits (n), etc.

(32-63,96-127,160-191,...)
� General rule for position n: skip n−1 bits, check n bits, skip n bits, check n bits... Position 1 (n=1): skip 0 bits

(0=n−1), check 1 bit (n), skip 1 bit (n), check 1 bit (n), skip 1 bit (n), etc. (1,3,5,7,9,11,13,15,...)
� Position 2 (n=2): skip 1 bit (1=n−1), check 2 bits (n), skip 2 bits (n), check 2 bits (n), skip 2 bits (n), etc. (2,3,6,7,10,11,14,15,...)
� Position 4 (n=4): skip 3 bits (3=n−1), check 4 bits (n), skip 4 bits (n), check 4 bits (n), skip 4 bits (n), etc.

(4,5,6,7,12,13,14,15,20,21,22,23,...)
� Position 8 (n=8): skip 7 bits (7=n−1), check 8 bits (n), skip 8 bits (n), check 8 bits (n), skip 8 bits (n), etc. (8-15,24-31,40-47,...)
� Position 16 (n=16): skip 15 bits (15=n−1), check 16 bits (n), skip 16 bits (n), check 16 bits (n), skip 16 bits (n), etc.

(16-31,48-63,80-95,...)
� Position 32 (n=32): skip 31 bits (31=n−1), check 32 bits (n), skip 32 bits (n), check 32 bits (n), skip 32 bits (n), etc. (32-63,96-

127,160-191,...)

� General rule for position n: skip n−1 bits, check n bits, skip n bits, check n bits...

Single-Bit Error Correction

Single-Bit Error Correction
� If received

� 0 1 0 1 0 1 0 1 0 1 1 1

� P1 and P3 fails….

� Sums error position 0101 = 5

Data Integrity
� Parity Checking

� Parity Checking Analysis

� Double-Bit Error Detection

� Burst Error Detection

� Cyclic Redundancy Checking
� Polynomial Division

� Algorithm of CRC

� Analysis of CRC

� Hamming Codes
� Single-Bit Error Correction

� Multiple-Bit Error Correction

Multiple-Bit Error Correction
� General algorithm

� Although any number of algorithms can be created,
the following general algorithm positions the parity
bits at powers of two to ease calculation of which bit
was flipped upon detection of incorrect parity.

� All bit positions that are powers of two are used as
parity bits. (positions 1, 2, 4, 8, 16, 32, 64, etc.)

� All other bit positions are for the data to be encoded.
(positions 3, 5, 6, 7, 9, 10, 11, 12, 13, 14, 15, 17, etc

Multiple-Bit Error Correction
� Each parity bit calculates the parity for some of the bits in

the code word. The position of the parity bit determines
the sequence of bits that it alternately checks and skips.
� Position 1 (n=1): skip 0 bit (0=n−1), check 1 bit (n), skip 1 bit

(n), check 1 bit (n), skip 1 bit (n), etc. (1,3,5,7,9,11,13,15,...)

� Position 2 (n=2): skip 1 bit (1=n−1), check 2 bits (n), skip 2
bits (n), check 2 bits (n), skip 2 bits (n), etc.
(2,3,6,7,10,11,14,15,...)

� Position 4 (n=4): skip 3 bits (3=n−1), check 4 bits (n), skip 4
bits (n), check 4 bits (n), skip 4 bits (n), etc.
(4,5,6,7,12,13,14,15,20,21,22,23,...)

� Position 8 (n=8): skip 7 bits (7=n−1), check 8 bits (n), skip 8
bits (n), check 8 bits (n), skip 8 bits (n), etc. (8-15,24-31,40-
47,...)

Multiple-Bit Error Correction

Multiple-Bit Error Correction
� If you want to play, how does this protocol work.

� http://www.ee.unb.ca/cgi-
bin/tervo/hamming.pl?L=6&D=4&X=+Receive+&T=10
0000

