LE 517 Data Communications and Networks

Week 5:- Contention Protocols and Data Compression

By

Dr. Piya Techateerawat

Contention Protocols and Data Compression

- Contention Protocols
 - Aloha Protocols
 - Carrier Sense Multiple Access (CSMA)
 - Collision Detection
 - Token Passing
- Data Compression
 - Huffman Code
 - Run Length Encoding
 - Relative Encoding
 - Lempel-Ziv Encoding
 - Others Encoding

- Contention Protocols
 - Aloha Protocols
 - Carrier Sense Multiple Access (CSMA)
 - Collision Detection
 - Token Passing
- Data Compression
 - Huffman Code
 - Run Length Encoding
 - Relative Encoding
 - · Lempel-Ziv Encoding
 - Others Encoding

Contention Protocols

- Multiplexer can transmitted multi-channel over one communication.
- A large number of users push the protocol to manage over the transmission medium.
- Contention Protocols organize traffic in network to flow from many users.
- It could be a like as traffic light on the road.

- Contention Protocols
 - Aloha Protocols
 - Carrier Sense Multiple Access (CSMA)
 - Collision Detection
 - Token Passing
- Data Compression
 - Huffman Code
 - Run Length Encoding
 - Relative Encoding
 - · Lempel-Ziv Encoding
 - Others Encoding

Aloha Protocol

- Initially, University of Hawaii launch "Pure Aloha"
 - Simple Protocol, when it collided then wait for random time.
- Improved version, "Slotted Aloha"
 - A station allow to transmit wait for slot time T where T units each
 - S=Ge-2G (pure Aloha)
 - S=Ge^{-G} (Slotted Aloha)
 - S is the average number of successful frames sent per slot
 - G is the traffic rate measured as the average number of frames generated per slot

- Contention Protocols
 - Aloha Protocols
 - Carrier Sense Multiple Access (CSMA)
 - Collision Detection
 - Token Passing
- Data Compression
 - Huffman Code
 - Run Length Encoding
 - Relative Encoding
 - Lempel-Ziv Encoding
 - Others Encoding

Carrier Sense Multiple Access (CSMA)

- CSMA
 - 1. Listen to the medium for any activity.
 - 2. If there is no activity, transmit; otherwise wait.

- Contention Protocols
 - Aloha Protocols
 - Carrier Sense Multiple Access (CSMA)
 - Collision Detection
 - Token Passing
- Data Compression
 - Huffman Code
 - Run Length Encoding
 - Relative Encoding
 - Lempel-Ziv Encoding
 - Others Encoding

Collision Detection

- CSMA/CD
 - If a medium is buys, the station waits per the persistence algorithm.
 - If the medium is quiet the station transmits the frame and it continues to listen.
 - If it detects a collision it immediately stops transmitting and sends a short jamming signal.
 - After a collision it waits a random amount of time before trying to send again.

Collision Detection

- Binary Exponential Backoff
 - If it collides for the 1st time, wait o or 1 time slot (randomly)
 - If it collides for the 2nd time, wait 0, 1, 2 or 3 slots (randomly)
 - There fore, after n collisions, wait range is 0 to 2^{n-1} slots.
 - After 16 collisions, stop. And other software must investigate this error.

Contention Protocols and Data Compression

- Contention Protocols
 - Aloha Protocols
 - Carrier Sense Multiple Access (CSMA)
 - Collision Detection
 - Token Passing
- Data Compression
 - Huffman Code
 - Run Length Encoding
 - Relative Encoding
 - · Lempel-Ziv Encoding
 - Others Encoding

Token Passing

- Token Ring:- Token is travelled around the network.
 - To send data simply reserved the token and send data.
- Slotted Ring:-
 - Improve from Token Ring that one host may block the next host from sending.
- Token Bus:-
 - Specific the number to the station and token is travelled from highest number to lowest number.

Token Passing Token Passing

- Contention Protocols
 - Aloha Protocols
 - Carrier Sense Multiple Access (CSMA)
 - Collision Detection
 - Token Passing

Data Compression

- Huffman Code
- Run Length Encoding
- Relative Encoding
- Lempel-Ziv Encoding
- Others Encoding

Huffman Code

Letter	Frequency
A	50%
В	25%
C	25%

Letter	Code
A	О
В	10
С	11

A A B C o o 10 11

- Contention Protocols
 - Aloha Protocols
 - Carrier Sense Multiple Access (CSMA)
 - Collision Detection
 - Token Passing
- Data Compression
 - Huffman Code
 - Run Length Encoding
 - Relative Encoding
 - · Lempel-Ziv Encoding
 - Others Encoding

Run Length Encoding

- In some case, e.g. fax, it does not use frequency to encode effectively.
- Fax uses o & 1 as white and dark.
- Therefore, repeating number of "o" can be cut down by telling how many repetitive.
- E.g. 0000010000100000 -> 5,4,5

- Contention Protocols
 - Aloha Protocols
 - Carrier Sense Multiple Access (CSMA)
 - Collision Detection
 - Token Passing
- Data Compression
 - Huffman Code
 - Run Length Encoding
 - Relative Encoding
 - Lempel-Ziv Encoding
 - Others Encoding

Relative Encoding

- Relative Encoding or Differential Encoding
 - Video Format is not much repetitive the value.
 - However, it is little change from frame to frame.
 - Therefore, it use o for non-change and 1 as change.
 - Then, it can use run length to encode the repetitive number of o.

- Contention Protocols
 - Aloha Protocols
 - Carrier Sense Multiple Access (CSMA)
 - Collision Detection
 - Token Passing
- Data Compression
 - Huffman Code
 - Run Length Encoding
 - Relative Encoding
 - Lempel-Ziv Encoding
 - Others Encoding

Lempel-Ziv Encoding

- This encoding looks for often-repeated string and store them just once. Then it replaces multiple occurrences with a pointer.
- E.g. **The**n, **the**y start **the** theme by **the**mselves.
 - "The" is repeated for several times. It will save once and put the pointer for the repetitive.

- Contention Protocols
 - Aloha Protocols
 - Carrier Sense Multiple Access (CSMA)
 - Collision Detection
 - Token Passing
- Data Compression
 - Huffman Code
 - Run Length Encoding
 - Relative Encoding
 - Lempel-Ziv Encoding
 - Others Encoding

