LE 517 Data Communications and Networks

Week 12:- Wide Area Networks

By

Dr. Piya Techateerawat

- Network Routing
 - Types of Routing
 - Routing Tables
 - Dijkstra's Algorithm
 - Bellman-Ford Algorithm
 - Routing Information Protocol (RIP)
- Public Data Networks
 - Packet Switched Network Modes
 - X.25 Public Data Network Interface Standard

WAN

- People use WAN for e-mail and file transfer.
- WAN must cooperate with different protocols
 - Protocol converters:- Translate from one protocol to another.
- Connection can be separate from layer 1 to layer 7
 - E.g. layer 3 generally called as "router", layer 7 called "gateway"

Network Routing

- Types of Routing
- Routing Tables
- Dijkstra's Algorithm
- Bellman-Ford Algorithm
- Routing Information Protocol (RIP)
- Public Data Networks
 - Packet Switched Network Modes
 - X.25 Public Data Network Interface Standard

Network Routing

• There are number of host and connecting, it needs direction to travel.

Network Routing

- Which path to go ?
- How to determine the best path?
- How to calculate ?
- Exchange data is required?

- Network Routing
 - Types of Routing
 - Routing Tables
 - Dijkstra's Algorithm
 - Bellman-Ford Algorithm
 - Routing Information Protocol (RIP)
- Public Data Networks
 - Packet Switched Network Modes
 - X.25 Public Data Network Interface Standard

- Routing Algorithm
 - Centralized Routing
 - Distributed Routing
 - Static Routing
 - Adaptive Routing

- Centralized Routing
 - All interconnection information is generated and maintained at a single central location.
 - It consists of a row and column indicates the first node, next node and cost.
 - From information of each node will calculated as final matrix.

- Distributed Routing
 - Means no central control.
 - Each node must determine and maintain routing independently.
 - Difficult to calculate without global view.
 - Required special alogrithm to assist

- Static Routing
 - Once a node determine its routing table, node does not change it.
 - The cheapest path is not dependent on time.

- Adaptive Routing
 - Allow a network node to respond to change and update routing table accordingly.
 - E.g. traffic on network is increase significantly.
 - Concern: how to change this effectively/sensitivity ?

- Network Routing
 - Types of Routing
 - Routing Tables
 - Dijkstra's Algorithm
 - Bellman-Ford Algorithm
 - Routing Information Protocol (RIP)
- Public Data Networks
 - Packet Switched Network Modes
 - X.25 Public Data Network Interface Standard

Routing Tables

- To illustrate the next hop to go for appropriate data and destination.
- Please see previous lecture for detail.

- Network Routing
 - Types of Routing
 - Routing Tables
 - Dijkstra's Algorithm
 - Bellman-Ford Algorithm
 - Routing Information Protocol (RIP)
- Public Data Networks
 - Packet Switched Network Modes
 - X.25 Public Data Network Interface Standard

Dijkstra's Algorithm

- It can be called as "shortest path algorithm" or "forward search algorithm"
- Initially, cost is large (infinity).
- Then, first connection determine from the direct connection.
- The rest determine from cost(V) and update table with lowest cost.

- Network Routing
 - Types of Routing
 - Routing Tables
 - Dijkstra's Algorithm
 - Bellman-Ford Algorithm
 - Routing Information Protocol (RIP)
- Public Data Networks
 - Packet Switched Network Modes
 - X.25 Public Data Network Interface Standard

Bellman-Ford Algorithm

- Dijkstra's algorithm produced the cheapest path by working forward from a given source.
- Bellman-Ford work backward search algorithm.
- E.g. cost(A,Z) it looks 1. cost (A,B) + cheapest(B,Z)
 2. cost (A, C) + cheapest (C,Z)

Bellman-Ford Algorithm

- How the neighbor node knows the cheapest route to Z?
 - Because they are centralized and distributed.
 - So each node contains the matrix of connection
 - Initially state as unknown for indirect connect
 - Then update for each iteration.

- Network Routing
 - Types of Routing
 - Routing Tables
 - Dijkstra's Algorithm
 - Bellman-Ford Algorithm
 - Routing Information Protocol (RIP)
- Public Data Networks
 - Packet Switched Network Modes
 - X.25 Public Data Network Interface Standard

Routing Information Protocol (RIP)

- It use a hop count to determine.
 - Initially, it sends message along the network.
 - The message specify number of hops.
 - The router can determine which network and number of hops can be reached.
 - To repeat this steps, information will be storing and broadcast.

- Network Routing
 - Types of Routing
 - Routing Tables
 - Dijkstra's Algorithm
 - Bellman-Ford Algorithm
 - Routing Information Protocol (RIP)
- Public Data Networks
 - Packet Switched Network Modes
 - X.25 Public Data Network Interface Standard

Public Data Networks

• This to develop network that anyone could access.

• European country face the problem that standard is incompatible between the countries.

- Network Routing
 - Types of Routing
 - Routing Tables
 - Dijkstra's Algorithm
 - Bellman-Ford Algorithm
 - Routing Information Protocol (RIP)
- Public Data Networks
 - Packet Switched Network Modes
 - X.25 Public Data Network Interface Standard

Packet Switched Network Modes

- Virtual Circuits
 - Creating connection between two parties
 - This requested is routed through network nodes
 - Establishing a path between caller and destination
 - The connection is not a physical one.
 - Each node may have several virtual circuits.

Packet Switched Network Modes

- Datagram service
 - The path may not always be the best route
 - Each packet should be route for the best route in present time.

- Network Routing
 - Types of Routing
 - Routing Tables
 - Dijkstra's Algorithm
 - Bellman-Ford Algorithm
 - Routing Information Protocol (RIP)
- Public Data Networks
 - Packet Switched Network Modes
 - X.25 Public Data Network Interface Standard

- X.25 defines the protocol between DTE and a DCE connection.
- X.25 defines a synchronous transmission analogues to the three lowest layers of OSI.

• X.25 Packet Formats

Flags, logical group number | logical channel number | control| data Data Packet

Flags, logical group number | logical channel number | control| other Control packet

> 1 1 variable (number of octets)

- X.25 provides 2 types of VC
 - Permanent virtual circuit
 - Similar to leasing a leased line
 - Virtual call
 - Requires a call connection protocol to be performed data transfer

